
Trends
Conventional chemotherapy and radia-
tion therapy alter immune cell function
in addition to their direct cytocidal
effects on rapidly proliferating tumor
cells.

CD8+ T cells are often found in immuno-
suppressive tumor microenvironments.

These immunosuppressive microenvir-
onments are generally tumor subtype-
specific and can be mediated by a
multitude of immune cells, including
macrophages.
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Chemotherapy and radiotherapy have been extensively used to eradicate can-
cer based on their direct cytocidal effects on rapidly proliferating tumor cells.
Accumulating evidence indicates that these therapies also dramatically affect
resident and recruited immune cells that actively support tumor growth. We now
appreciate that mobilization of effector CD8+ T cells enhances the efficacy of
chemotherapy and radiotherapy; remarkable clinical advances have been
achieved by blocking regulatory programs limiting cytotoxic CD8+ T cell activity.
This review discusses immune-mediated mechanisms underlying the efficacy of
chemotherapy and radiotherapy, and provides a perspective on how under-
standing tissue-based immune mechanisms can be used to guide therapeutic
approaches combining immune and cytotoxic therapies to improve outcomes
for a larger subset of patients than is currently achievable.
Immune checkpoint inhibitors provide
durable responses in a subset of
patients for many cancer subtypes.

Overcoming additional tissue-based
mechanisms of immunosuppression
embedded within the tumor microenvir-
onment may improve clinical response
rates.
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Antitumor Immunity: CD8+ T cells and their Regulation
Surrounding a nest of neoplastic tumor cells is a microenvironment consisting of diverse
mesenchymal support cells (fibroblasts, adipocytes, etc.), cells forming hematogenous and
lymphatic vasculature, immune cells, and a dynamically regulated extracellular matrix (ECM), all
of which influence neoplastic progression to the malignant and/or metastatic state [1,2].
Resident or recruited immune cells present within the tumor microenvironment (TME) represent
a diverse assemblage of both lymphoid and myeloid cells, and, depending on their activation
state and phenotype, these can either promote or inhibit various aspects of tumor development
[3] as well as regulate response to anticancer therapy [4,5].

Antitumor immunity is largely imposed by antigen-specific CD8+ T cells [6], although tumoricidal
macrophages do play a role [7]. Antigens (Ags), typically foreign substances of environmental,
viral, or bacterial origin, products of somatically altered proteins, or debris from dying (apoptotic)
cells, are processed and presented by major histocompatibility complex (MHC) on Ag-present-
ing cells (APCs), including (but not limited to) dendritic cells, macrophages, and B cells. CD8+ T
cells utilize T cell receptors (TCRs) to recognize MHC-presented peptides and subsequently
mount an antigen-specific cytolytic attack [8,9]. In particular, Ag–TCR engagement ultimately
leads to the activation and proliferation of CD8+ T cells that play a crucial role in autoimmunity,
response to pathogens, and tumor suppression [10–13]. Genetic rearrangement of TCRs during
T cell development enables the recognition of a broad spectrum of processed Ags in the adult.
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Individual T cells vary with respect to precise structure of TCRs, and this variation endows each T
cell with a different specificity for a distinct foreign entity [8]. There is growing evidence that solid
tumors contain T cells specific to tumor Ags, but have either been rendered tolerant or inhibited
from killing tumor cells by expression of suppressive cytokines such as interleukin (IL)-10 [14]
and arginase [15], expression of ligands for immune checkpoints molecules [16], downregulation
of MHC class I on tumor cells [17], or other immunosuppressive factors expressed within the
TME [18]. Therefore, a major goal of immune-based therapies is to quell regulatory programs
limiting CD8+ T cell responses to tumor Ags. For example, selective checkpoint inhibition can
unleash endogenous antitumor programs; this approach has resulted in dramatic and durable
clinical responses for several tumor types. In particular, antibodies blocking cytotoxic T lym-
phocyte-associated protein 4 (CTLA-4) [19–21] or the programmed death (PD)-1 pathway have
resulted in durable responses for various malignancies [22–26]. Despite these clinical suc-
cesses, the endogenous immune responses of many patients are insufficient to mediate
antitumor programs when checkpoints are blocked, possibly because of high-level expression
of suppressive molecules expressed by regulatory T or B cells, or myeloid cells present within
the TME.

Myeloid cells, including various subsets of monocytes, neutrophils, and macrophages, are
implicated in T cell suppression [27]. Macrophages exist along a continuum of subtypes in
tumors with classically activated M1-like macrophages at one end, and alternatively activated
M2-like macrophages at the other [28]. In breast cancers, tumors vary with respect to relative
proportions of macrophages (in general) and CD8+ T cells. High macrophage ratios correlate
with decreased overall survival (OS), progression-free survival (PFS), and pathologic complete
response to therapy (pCR), with the most significant stratification of these parameters in women
with HER2+ (human epidermal growth factor receptor 2 positive) and basal/triple negative breast
cancer [29,30]. Several have reported that macrophages present in several types of solid tumors
are predominantly immunosuppressive (M2-like) and play a major role in suppressing the actions
of CD8+ T cells, as well as fostering malignancy by providing pro-growth, survival, and
angiogenic molecules crucial for rapid tumor development [2,31–36]. A more extensive sum-
mary of the protumorigenic functions of macrophages has been recently reviewed elsewhere
[4,37].

The functional significance of macrophage:T cell ratios has been examined in preclinical mouse
models of cancer development. The data indicate that either reprogramming immunosuppres-
sive macrophages towards an proinflammatory T helper 1 (TH1) state or eliminating macro-
phages altogether, depending on the tumor context, limits tumor growth by fostering the
infiltration of interferon (IFN)-g or granzyme B-producing CD8+ T cells [30,34]. These
approaches yield significantly improved outcomes for tumor-bearing mice when delivered
in combination with cytotoxic chemotherapy (CTX) or radiotherapy (RT), some targeted
therapies, or other immunotherapeutic approaches [29,38–47]. Discussed below are impli-
cations of these findings with regards to how immunomodulatory agents interact with cytotoxic
therapies and may drive potent and durable antitumor immune responses for improved clinical
outcomes.

Immune Response to CTX and RT
Tumor-Intrinsic Effects
CTX and RT have tumoricidal properties that are directly linked to their ability to arrest cell cycle
progression leading to cell death. Several classes of CTX (e.g., alkylating agents, nitrosureas,
platinum agents, antimetabolites, antitumor antibiotics, anthracyclines, epipodophyllotoxins,
vinca alkaloids, taxanes, and camptothecin analogs) have been developed, all of which kill
proliferating cells by either cell cycle-specific or cell cycle-nonspecific mechanisms [48]. On the
other hand, RT (e.g., ionizing radiation) leads to cell death by inducing single- and double-strand
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breaks in DNA, and can be synergistic when used in combination with CTX. While initially thought
to be immunologically silent, it is now clear that the massive cell death resulting from these
modalities also leads to release of stress molecules and antigens into the TME, and these, in part,
sculpt local (and likely systemic) immune responses to ‘damage’ and subsequently impact
therapeutic response [49–51].

Tumor-Extrinsic Immune Effects
The fact that CTX and RT exert significant effects on tumor-infiltrating leukocytes was unappre-
ciated in the 1950s and 60s when these modalities were being developed as mainstays for
cancer therapy. Although both treatments can lead to transient depletion of resident leukocytes
and/or myelosuppression via direct cytocidal activity, rebound effects following therapy do occur
[52] and are known to impact response to therapy.

Immune Effects of RT
While early experimental studies revealed that RT induces tumor regression by CD8+ T cell
dependent mechanisms [53,54], later work specifically demonstrated that release of IFN-g by
CD8+ T cells mediates these effects [55,56]. Following RT, pre-apoptotic exposure of calreticulin
on tumor cell surfaces presages release of high-mobility group box 1 (HMGB1) during late
apoptosis. HMGB1 subsequently binds to toll-like receptor (TLR)4 on dendritic cells (DCs),
leading to antigen processing and presentation, as well as cytotoxic T cell activation [57–59]. We
now appreciate that dying tumor cells release numerous stress factors in addition to HMGB1,
including ATP, heat shock proteins (HSPs), and other danger-associated molecular patterns
(DAMPs) that signal through TLRs on DCs, leading to DC maturation and cross-presentation of
tumor antigens [60,61].

In addition to fostering DC maturation and cross-presentation to CD8+ T cells, RT also promotes
CD8+ T cell recruitment into tumors via two mechanisms: (i) CXCR6 (CXC chemokine receptor
6)-expressing CD8+ T cells are recruited to tissue in response to CXCL16 production induced by
RT [62]; and (ii) RT upregulates expression of adhesion molecules E-selectin and ICAM-1
(intercellullar adhesion molecule 1) on surrounding vasculature, thereby enhancing leukocyte
endothelial transmigration and entry into tissue [63]. The consequences of DC maturation and
CD8+ T cell mobilization are most clearly appreciated in the abscopal effect following RT where
efficacy is observed in distant metastatic sites after irradiation of primary tumors [64]. Both
cytotoxic CD8+ T cells and Ag-presenting DCs mediate the abscopal effects, at least in animal
models. In a syngeneic mammary carcinoma model, tumor growth outside the irradiation field
was stunted following RT, but only in combination with FLT3 (FMS-like tyrosine kinase 3) ligand,
a growth factor responsible for recruitment and maturation of DCs from bone marrow [65].
This effect was impaired in mice lacking functional T cells, indicating that cross-presentation of
tumor antigens to CD8+ T cells mediates this phenomenon [65]. However, it should be noted
that these results are rarely observed in the clinic with RT monotherapy, likely due to an
immunosuppressive TME.

Supporting this rationale are studies demonstrating that tumor-promoting monocytes and
macrophages are recruited to TMEs following RT, likely mediated by upregulation of growth
factors [30] or chemokines such as CXCL12 in RT-induced hypoxic regions [66,67]. Recruited
macrophages in this scenario are generally immunosuppressive, support angiogenesis, and
generate a protumor microenvironment. Efforts to prevent macrophage recruitment or deplete
them once they have arrived following RT delays tumor regrowth when combined with RT in
squamous [68], mammary [38], and prostate [39] cancers, as well as in glioblastoma [66].
Together, these studies indicate that while the ability to produce a potent and durable antitumor
CD8+ T cell response is induced by RT, there is often a macrophage-regulated immunosup-
pressive TME that thwarts those efforts. Thus, combining immunotherapies designed to
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dampen macrophage-mediated immunosuppression and enhance CD8+ T cell antitumor
responses may prove to be more efficacious than the use of either approach alone.

Immune Effects of CTX
While the effects of the immune system on efficacy of CTX have been intensely examined and
recently reviewed [4,5], the converse effects of CTX on the immune system are less studied. In
many instances, treatment with CTX results in an enhanced cytotoxic CD8+ T cell response.
Dose-dense treatment of ovarian cancer with either cisplatin or paclitaxel yields enhanced
IFN-g production by CD8+T cells in both murine models and in patients [69]. Similarly, treatment
of murine mammary carcinoma and fibrosarcoma tumors with doxorubicin results in
IFN-g-producing CD8+ T cell proliferation and their recruitment to tumors [70]. As is similarly
observed with RT, some types of CTX (e.g., anthracyclines, cyclophosphamide, and oxaliplatin)
also activate immunogenic cell death pathways whereby cell surface expression of calreticulin
is followed by release of ATP, HMGB1, and HSPs, thereby leading to DC-mediated cross-
presentation of tumor antigens to CD8+ T cells [71,72]. Corroborating in vitro evidence
indicates that exposure of cancer cells to 5-fluoruracil or doxorubicin stimulates HSP release
and promotes engulfment of cell debris by DCs, thereby promoting cross-presentation to CD8+

T cells [73,74]. Similarly, when doxorubicin-treated cancer cells are injected into syngeneic
mice, DCs phagocytose cell debris and generate a tumor-specific CD8+ T cell antitumor
immune response [75].

While CD8+ T cells certainly elicit tumor cell death, natural killer (NK) cells also mediate tumor cell
death and are affected by CTX, albeit with varying outcomes. NK cell effector functions have
been found to be impaired in breast cancer patients treated with high-dose cyclophosphamide
[76,77]. However, dosing may influence this effect because low-dose cyclophosphamide
treatment was instead found to stimulate NK activity in late-stage cancer patients [78]. More-
over, CTX enhances NK recruitment and bioeffector functions in several cancer models [79–81],
indicating that CTX can regulate NK cell recruitment and activity, but may be dependent on
cancer type or dosing strategy.

In addition to the effects on DCs and NK cells, macrophage phenotype can also be influenced by
CTX. Generally speaking, the majority of macrophages infiltrating treatment-naïve tumors exhibit
gene expression patterns corresponding to M2-like macrophages [28,82,83] that are immuno-
suppressive in nature towards NK and T cells [84]. Thus, targeting macrophages to relieve
immunosuppression by reprogramming their activities towards M1-like states is an attractive
therapeutic strategy that is being pursued clinically [4]. Context and tumor-specificity will likely
underlie the therapeutic responses of these treatments. Preclinical mouse models have shown
that, whereas low-dose cyclophosphamide reprograms M2-like macrophages towards an
M1-like state in vivo [85], other tumor types may require additional immunomodulation for
effective reprogramming [29,30,34,86,87] and the elaboration of functional antitumor CD8+

T cell responses.

Mechanisms of Immune Resistance: Checkpoints
While the aforementioned mechanisms indicate that RT and CTX can produce robust tumor-
specific immune responses through mobilization of CD8+ T cells, there are often counter-
regulatory mechanisms in place that restrict these responses. Most notably, immune checkpoint
molecules function to limit activation of CD8+ T cells following Ag stimulation by APCs [16]. While
these checkpoints are necessary to dampen an active CD8+ T cell immune response and to
avoid autoimmune pathologies, these molecules are attractive targets for enhancing T cell
mediated antitumor programs in the context of cancer. As such, therapies targeting CTLA-4 and
PD-1 have been developed and evaluated clinically, and are showing tremendous efficacy in
several tumor types [19–23,88–91].
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While the CTLA-4 and the PD-1 pathways both have the capacity to dampen antitumor
responses, their mechanisms of action are distinct. T cell expression of CTLA-4 functions to
dampen T cell function by outcompeting for binding and costimulation of the TCR by CD28 [92].
Instead of functioning within the TME as is the case with PD-1, CTLA-4 functions to dampen T
cell function in secondary lymphoid organs where cross-presentation occurs. It should be noted
that CTLA-4 is primarily expressed on CD4+ T cells and that efficacy of /CTLA-4 therapy likely
relies on T helper function, although direct action of CTLA-4 on CD8+ T cells as has been
reported [93]. On the other hand, PD-1 is primarily expressed on CD8+ T cells and has two
ligands that are differentially expressed, PD-L1 and PD-L2. While PD-L2 is primarily expressed
on APCs, PD-L1 is more broadly expressed and is found on neoplastic cells, immune cells, and
endothelial cells [16,94,95]. Engagement of PD-1 with PD-L1 or PD-L2 within the TME dampens
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Figure 1. (A) Apoptotic tumor cells release high-mobility group box 1 (HMGB1), ATP, heat shock proteins (HSPs), and other
danger-associated molecular patterns (DAMPs) into the stroma following chemotherapy and/or radiation therapy. DAMPs
signal through TLRs on DCs and lead to maturation, trafficking to lymph nodes, and cross-presentation of tumor antigens to
cytotoxic T cells. (B) CD8+ T cells present within the tumor microenvironment (TME) are often rendered tolerant via
immunosuppressive factors released by M2 macrophages or a T helper 2 (TH2) microenvironment, as well as expression of
immune checkpoint inhibitors by various cells within the microenvironment. By utilizing cancer type-specific immunother-
apy, macrophages can be repolarized such that CD8+ T cells can be recruited and activated within the TME. (C) Expression
of checkpoint inhibitors, such as PD-1 (programmed death 1), PD-L1, and CTLA-4 (cytotoxic T lymphocyte-associated
protein 4) limits the activity of CD8+ T cells. By blocking checkpoint molecules, CD8+ T cells are able to mount a cytoloytic
attack against tumor antigens. By targeting several or all of the pathways outlined above, the immunosuppressive TME can
become immune-stimulatory and is likely to offer potent and durable antitumor immune responses in the clinic. Abbrevia-
tions: APC, antigen-presenting cell; GZMB, granzyme B; MF, macrophage.
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the effector functions after TCR stimulation [96]. Moreover, PD-1 engagement can lead to
increased migration of CD8+ T cells, thereby reducing the time available for TCR stimulation and
effectively rendering tumor cells invisible [97] (see [98] for a more thorough and recent review on
immune checkpoints).

Several studies have evaluated patients treated with /CTLA-4 and found that T cell responses
to therapy can be monitored in peripheral blood [99]. These data reveal the possibility of
identifying circulating biomarkers that may be indicative of tumor response to therapy. By
sequencing TCRb chains to define diversity and frequency of T cell clones in patients with
prostate cancer treated with /CTLA-4 therapy, CTLA-4 blockade was found to induce global
remodeling of the T cell repertoire, a response that could be monitored in blood [99]. Although
CTLA-4 blockade induced both gains and losses in the frequency of specific TCR clones, a gain
in clonotype frequency predominated in patients on therapy, thereby revealing increased T cell
diversity [99]. Similarly, TCR pattern changes were observed in melanoma patients treated
with various immune checkpoint inhibitors within 4 weeks of treatment [100]. Of particular
interest, patients with the most favorable outcomes were those whose most frequent TCRs were
able to maintain an undiminished frequency during therapy, indicating that some patients have
in place a set of T cells primed and ready to attack, needing only immunotherapy to unleash
them, and that TCR measurements conducted at two timepoints can identify patients likely to
benefit.

The success of CTLA-4 blockade led to rapid clinical evaluation of monoclonal antibodies
targeting the PD-1 pathway. Antibodies against PD-1, like those targeting CTLA-4, have
demonstrated significant clinical efficacy in non-small-cell lung carcinoma, melanoma, renal
cell carcinoma [22], and Hodgkin's lymphoma [101]. Significantly, /PD-1 antibodies have been
found to be efficacious in CTLA4-refractory disease [102]. Similarly, /PD-L1 antibodies have
demonstrated efficacy in non-small-cell lung carcinoma, melanoma, renal cell carcinoma [23],
and bladder cancer [103]. Because the mechanisms regulating CTLA-4 and PD-1 function are
distinct with regards to regulating T cell function [104,98], combination approaches have also
been investigated, and two recent clinical trials in advanced melanoma demonstrated greater
efficacy using /CTLA-4 combined with /PD-1 [25,105].

Overcoming Resistance
Despite the clinical success of checkpoint inhibition, the majority of patients still fail to respond to
therapy, likely due either to a lack of ligand expression or due to compensatory mechanisms
limiting productive T cell infiltration [94]. Given that CTX and RT both elicit immunogenic cell
death, resulting in cross-presentation of tumor antigens to CD8+ T cells, several studies have
combined CTX or RT with checkpoint inhibitors to investigate synergy. Indeed, RT enhances
TCR diversity and, when combined with /PD-1 or /CTLA-4 antibodies, reverses T cell
exhaustion and promotes T cell expansion, respectively [106]. Moreover, in mouse models
of pancreatic cancer, where macrophage antagonists combined with CTX foster CD8+ T cell
infiltration of tumors, tumor regression is restricted by simultaneous upregulation of PD-L1 and
CTLA4 [47]. Importantly, PD-1 and/or CTLA4 blockade in this context potently elicited tumor
regression, even in larger established tumors [47]. Collectively, these data indicate that a
combinatorial therapy for myeloid cell reprogramming should also be considered when aiming
for a long-term durable antitumor response to checkpoint inhibition.

Concluding Remarks
As mainstays of tumor therapy, CTX and RT have profound effects not only on rapidly-dividing
tumor cells that are the intended targets but also on cellular components of the TME that in turn
regulate overall response to therapy. Because both CTX and RT elicit immunogenic cell death in
tumor cells, these can also serve as an endogenous vaccine to provide tumor antigens against
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Outstanding Questions
Is there significant patient variability in
the expression of checkpoint inhibitors,
or is expression cancer type-specific?

Is there similar intratumoral heteroge-
neity for checkpoint inhibitors, as has
been observed for somatic mutations
and gene expression?

Does checkpoint inhibitor expression
vary as a function of neoplastic
progression?

Does checkpoint inhibitor expression
change in response to therapy?

Will checkpoint therapies lead to sub-
sequent autoimmune pathology?
which CD8+ T cells can be primed [107]. Unfortunately, the protumorigenic TME limits produc-
tive antitumor immune response and thereby restricts efficacy. Consequently, combating
immunosuppression and T cell exhaustion are primary targets for immunotherapy (Figure 1,
Key Figure). While many are hailing the emergence of checkpoint inhibitors as a panacea for
anticancer therapy, because CD8+ T cells have the capacity to recognize a virtually unlimited
number of tumor Ags, there are still many issues to overcome. While checkpoint blockade is
undoubtedly promising, in many cases less than 20% of patients have durable responses to
therapy. This raises several questions (see Outstanding Questions). Regarding whether check-
point expression changes in response to therapy, recent studies indicate that one mechanism of
resistance to /CTLA-4 treatment in melanoma is mediated by upregulation of PD-L1 by tumor
cells [106]. While this is one mechanism by which resistance can occur, there are likely other
mechanisms of resistance or immune escape in response to monotherapy, and future directions
in both clinical and basic research should aim to understand these pathways. An additional and
significant question that remains to be addressed is whether, by overcoming counter-regulatory
mechanisms by which CD8+ T cells exert antitumor responses, therapies will lead to subsequent
autoimmune pathology. A meta-analysis of clinical trial data from stage III–IV melanoma using
various immunotherapies revealed that 3.4% of all patients subsequently develop autoimmune
vitiligo, while patients treated with checkpoint inhibitors fared better, with a 2.0% incidence of
vitiligo [108]. Importantly, appearance of vitiligo after immunotherapy was associated with
response to therapy, where an increase progression-free survival and overall survival was
observed [108]. With accumulating clinical data emerging, additional adverse events in several
cancer types associated with checkpoint blockade are being identified [109]. For the most part,
adverse events can likely be managed with corticosteroids, and, interestingly, immunosuppres-
sion with corticosteroids does not appear to alter the clinical benefits of checkpoint blockade
[110]. Efforts are currently underway both in preclinical models and in the clinic to identify
efficacious combinations of immunotherapies for a majority of patients. Whether these com-
bined therapies will have broad applicability or will require personalization based on predictive
biomarkers remains to be determined. Regardless of the outcome, there is optimism for these
rational combinational immunotherapeutic strategies and the hope that they will provide potent
and durable antitumor immune responses in a greater number of patients than is currently
achievable.
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